Efficient computing in cryogenic environments, including classical von Neumann, quantum, and neuromorphic systems, is poised to transform big data processing. The quest for high-density, energy-efficient memories continues, with cryogenic memory solutions still unclear. We present a Cryogenic Capacitorless Random Access Memory (C2RAM) cell using advanced Si technology, which enhances storage density through its scalability and multistate capability. Remarkably, the C2RAM maintains data for over a decade with its extended retention times and offers potential as an artificial synapse. This positions C2RAM as an ideal nonvolatile memory candidate for cryogenic computing applications and emerging quantum technologies.